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a b s t r a c t

The Digitized First Byurakan Survey is the largest and the first systematic objective-prism survey of
the extragalactic sky. The detection, extraction, and classification of about 40 million spectra of about
20 million astronomical objects available in the survey require distinguishing the pixels containing
photons from the source and the noise pixels per object. This paper aims at developing a service
to classify the spectra of UV-excess galaxies, quasars, compact galaxies, and other objects in the
survey. Supervised and unsupervised convolutional neural network deep learning algorithms have been
developed and studied.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The generated data volumes of astronomical sky surveys range
rom several terabytes to zettabytes (Scaife, 2020). Enormous data
olume and complexity require developing and implementing
nnovative methods and novel approaches to data exploitation,
uch as Virtual Observatories (VO) (Hanisch, 2014). As a platform
or launching astronomical investigations, VO provides access to
assive data banks, software systems with user-friendly inter-

aces for data processing, analysis, and visualization, and even
ccess to resources on which the work can be carried out. VOs
nable astronomers, regardless of their location, to access the
dvanced computing facilities over the Internet. Constituted in
002, the International Virtual Observatory Alliance (Quinn et al.,
004) brings together several national and international organi-
ations, such as US Virtual Astronomical Observatory (Hanisch,
012), German Astrophysical Virtual Observatory (Demleitner
t al., 2007), or the European Virtual Observatory (Genova et al.,
015), which brings together many European countries.
The Armenian VO (ArVO) is a joint project between Byurakan

strophysical Observatory and the Institute for Informatics and
utomation Problems (Mickaelian et al., 2016) aiming at deploy-
ng an advanced virtual environment to meet data management
hallenges (Astsatryan et al., 2010). ArVO data resources’ core
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is the Digitized First Byurakan Survey (DFBS) (Mickaelian et al.,
2007), consisting of the extragalactic sky’s largest prism survey.
As the first systematic objective-prism survey of the extragalactic
sky, DFBS covers 17,000 square degrees in the Northern sky and
a high galactic latitude region in the Southern sky. Each DFBS
plate contains low-dispersion spectra of about twenty thousand
objects. The whole survey consists of about twenty million ob-
jects having several properties, like the color, broad emission
or absorption lines, or spectral energy distribution (SED). Be-
sides the DFBS, the datasets are obtained via 1 m, 0.5 m, and
0.2 m Schmidt (1.5 square degrees prism, photographic plates),
2.6 m (photographic plates and films) standard, and smaller old
telescopes located at the Byurakan Astrophysical Observatory.
These telescopes’ metadata include names, coordinates, and mag-
nitudes of the observed objects, equipment, receiver, emulsion,
filters, date, time, and exposure of observations, sky and weather
conditions, and observers. The DFBS datasets management sys-
tem obtains the objects using different parameters (observing
programs, telescopes, observing mode, dates, emulsions, or ob-
servers) (Mickaelian et al., 2009). The data is homogeneous in
a unique survey with definite criteria, observing material, and
methods. DFBS data is available in the open standard Flexible Im-
age Transport System (FITS) digital format (Hanisch et al., 2001)
to store, transmit, and process astronomical spectral objects (see
Fig. 1).

FITS format allows identification of the field in astronom-
ical coordinates and works with the available data. The DFBS

contains many different spectral types depending on the object
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Fig. 1. DFBS spectral image and digitized sky survey direct image of the same
area.

Fig. 2. DFBS spectra for various types of objects.

type, such as late-type stars, quasars, galaxies, or white dwarfs
(see Fig. 2). The length, the shape, the spectral energy distribution,
and available spectral lines allow identification of different types
of objects.

The detection, extraction, and classification of spectra of about
20 million astronomical objects require distinguishing the pixels
containing photons from the source and the noise pixels per
object. The problem is more critical to identify very dim objects
by their shapes and amount of brightness accurately, because
of point-spread function convolution, noise, and blending. The
DFBS contains up to 20 types (Massaro et al., 2008), but there is
no spectral classification by their shapes. Machine learning (ML)
paradigms are vital elements to extract and explore astronomical
datasets enabling them to classify unexpected structures.

The study aims at developing a service based on convolutional
neural network (CNN) to classify UV-excess galaxies, carbon stars,
and other spectral objects available in the DFBS survey. As input
data of CNNs, ASCII files of spectra and FITS images are used to
classify the following objects’ spectra:

• Ultraviolet-excess (UVX) galaxies (such as Markarian galax-
ies) – they have broader spectra than stars and longer UV
(blue) part compared to other galaxies (Huchra, 1977). These
objects appeared to contain exciting types of galaxies, such
as Active Galactic Nuclei, including Seyferts, LINERs and
some Quasars and Blazars, or Starburst galaxies. Very often,
they are not distinguishable on low-dispersion spectra;

• Quasars (QSOs) – typically show blue spectra, have flat SEDs
(spectral energy distributions) and strong/broad emission
lines. Quasars are the most distant objects of the Universe
and play crucial role in understanding the Cosmology;

• Compact galaxies (Seyferts, etc.) – often display stellar-
like spectra, sometimes may display strong/broad emission
lines;

• White dwarfs (WDs) – blue spectra, have broad absorption
lines. WDs are very compact objects and are considered as
the final stage of stellar evolution for most of the stars;
2

• Hot subdwarfs (sd) – very blue spectra, sometimes show
broad absorption lines. Hot subdwarfs are important to un-
derstand the evolutionary transition between normal stars
and WDs;

• Cataclysmic Variables (CVs) – blue spectra, in DFBS some-
times show emission lines. CVs are rather important for
studies of close binary systems, stellar interactions and stel-
lar evolution;

• Planetary Nebulae (PNe) – very strong emission lines and
weak continuum. PNe are considered as slow mass ejection
from central stars;

• Carbon (C) stars – extreme red spectra like short trian-
gles, others (earlier subtypes) may display absorption bands.
Carbon stars are important for understanding the chemical
evolution of stars;

• Other late-type stars (such as M type) – red spectra with
substantial red part and very faint blue part, absorption
bands may be observed. M and other late-type stars are used
to study the stellar evolution and Galactic kinematics.

2. Methodology

Both supervised and unsupervised learning methods have
been developed to classify the extracted astronomical objects
from the DFBS survey. As open-source platforms for machine
learning, TensorFlow and Keras are used to train the network
using the resources of the Armenian e-infrastructure (Astsatryan
et al., 2015). Horizontal axis flipping, rotation, shifting, and noise
injection augmentation techniques generate more training data
from original data.

2.1. Data preprocessing

A three-step image processing algorithm has been developed
to extract data from spectral images. In astrophysics, a thresh-
old detection algorithm is quite popular to obtain the amount
of light coming from each object to select pixels as sources
or background. The image thresholding algorithm partitions an
image into a foreground and background (Hajian et al., 2015).
The threshold is applied for each spectral image to identify the
objects from the background, and astronomical objects using the
coordinates for two points (x1, y1, x2, y2) bounding rectangles
that enclose them. It is assumed that all the pixels that appear
different from the background correspond to astronomical ob-
jects. Before thresholding, an image, non-linear noise reduction
Gaussian blur is used to blur the spectral images and remove
noise (Buades et al., 2005). Then, the adaptive mean thresholding
method is implemented to separate the foreground from the
background. The threshold value is analyzed per each spectra
in a window using its specific threshold value in the suggested
adaptive thresholding method (see Fig. 3).

The astronomical coordinates (alpha and delta) to pixel coor-
dinates (x and y) are converted for each astronomical object. For
instance, if the right ascension and the declination are equal to
08h18m29.00s and 18d57m40.48s, then the object is taken from
the plate FBS1477 using the plate fits file header information.
Afterward, the astronomical coordinates to pixel coordinates are
converted to get objects position in the spectral image. The x
coordinate is equal to 4929, and y is equal to 4894 in the example,
as mentioned above. The object’s bounding rectangle is identi-
fied using the pixel coordinates of the object and thresholded
image of the plate, which includes the object. Since the object’s
pixel coordinate is available, a boundary detection algorithm is
applicable. The Theo Pavlidis algorithm has been implemented
to find the object’s bounding coordinates using simple tracing

contour pixels based on a chain code to get the object’s bounding



H. Astsatryan, G. Gevorgyan, A. Knyazyan et al. Astronomy and Computing 34 (2021) 100442

r
a
p
t
o

2

r
m
d
e
u
b
p
s
s
i
c
A
d
F

i
s
u
b
m
v

Fig. 3. The results of spectras bounding rectangle finding algorithm.

ectangle (Pavlidis, 2012). The algorithm considers only three
djacent pixels, e.g., front-left, front, and front-right. If all three
ixels are white, the tracer turns right. It is possible to extract
he object’s 2D spectrum from the original plate image using the
bject’s bounding rectangle (see Fig. 4).

.2. Supervised learning

As a supervised learning approach, CNN deep learning algo-
ithms (Indolia et al., 2018) have been developed and imple-
ented on cleaned and ready data in the final stage. CNNs have
eep feed-forward architecture and astonishing ability to gen-
ralize better than networks with fully connected layers. CNNs
se the concept of weight sharing enabling to reduce the num-
er of parameters to train the network. The limited number of
arameters in CNNs overcome the suffer overfitting and train
moothly the datasets. The classification and feature extraction
tages use for the learning process. An image to be classified
s provided to the input layer, and the output is the predicted
lass label computed using extracted features from the image.
training dataset of example inputs and their corresponding

esired outputs are used in a supervised learning system (see
ig. 5).
The spectral images represented as vectors are used as the

nput data for training and testing CNN models. Data normalizing
cales data to fall within a smaller range, which helps speed
p the training phase. The datasets are transformed into values
etween 0 and 1 by dividing the difference between actual and
inimum values by the deviation of maximum and minimum
alues. Then the output is denormalized into the original data
3

Fig. 4. An illustration of the extraction of an object’s 2D spectrum from the
original plate image.

Fig. 5. Supervised learning scheme.

Fig. 6. CNN network architecture for image classification.

format for achieving the desired result. The network consists of 8
layers (see Fig. 6).

CNN accepts 160 × 50 pixels image as input, which is for-
warded through the convolutional layer. As essential building
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Fig. 7. Unsupervised learning scheme.

locks for CNNs, the max pooling layers reduce the input dimen-
ions and summarizes the most activated presence of a feature.
he pooling function reduces map-size significantly and gener-
tes another output vector. Therefore, the pooling layers, which
re implemented immediately after the convolutional layer, speed
p the simulations and makes the detected features more robust.
he convolution layer extracts the useful features from the input
mage with a filter. As an example, in the case of a 5X5 pixel
ilter, the Conv2D convolution layer computes the dot products
etween the image pixels’ values and the weights defined in the
ilter. The final filter sizes are decided per each convolutional
ayer based on the experiments and the CNN results. A 2D con-
olution layer (Conv2D) means that the convolution operation’s
nput is three-dimensional, while ‘‘2D convolution’’ refers to the
ovement of the filter in two dimensions. The flatten layer serves
s a connection between the convolution and the output layers.
The ANN then evaluates the error according to some pre-

efined cost function and computes appropriate corrections to
he parameters. These prediction errors are propagated back-
ard and use gradient descent to computation the parameter
pdates (Rumelhart et al., 1986). A rectified linear unit (ReLU)
ctivation (output zero when the input less than zero and output
qual to the input otherwise) is used for all hidden layers, as
functional mapping between inputs and outputs to learn and
odel the complex dataset (Nair and Hinton, 2010). The soft-
ax activation function is used for the output layer. The model
utputs are known classes of the spectrums.

.3. Unsupervised learning

A training dataset of example inputs is implemented based on
n unsupervised learning system consisting of input and hidden
odes (Kohonen, 1982). The network learns by associating several
nput pattern types with different hidden nodes (see Fig. 7).

The spectral images autoencoder represented as vectors are
sed as the input data. The autoencoder is implemented for an
nsupervised ML model to decrease the shape of the input data.
n autoencoder employs a symmetric structure composed of two
ain blocks:

• An encoder part that compresses the input into a low di-
mensional representation that contains the informative con-
tent of the data;

• A decoder part that is trained to reconstruct the input from
the features extracted by the encoder.

Once the unsupervised pre-training is completed, the encoder
art is thus a powerful automatic feature extractor that, com-
leted with a suitable output layer, can be then fine-tuned in a
 A

4

supervised way to obtain the desired estimation. A small feature
set for an object is created using the Autoencoder Artificial neural
network based on convolutional layers, also called Convolutional
Autoencoder. This artificial neural network helps to decrease the
shape of the input data.

The density-based clustering algorithm has played a vital
role in finding non-linear shapes based on clusterization den-
sity. Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) is the most widely used density-based algorithm. It
uses the concept of density reachability and density connectivity.
It has two principal parameters sigma and minimum samples
count. Since the features set are ready, the DBSCAN algorithm
is used (Zhang, 2019) to classify the objects. The backpropaga-
tion algorithm is used for training and K-means for clustering
to group similar data points together and discover underlying
patterns (MacQueen et al., 1967). K-means looks a pre-defined
number of clusters in a dataset.

3. Experimental results

The detection, extraction, and classification of about 20 million
astronomical spectral objects require distinguishing the pixels
containing photons from the source and the noise pixels per
object. CNNs enable us to have accurate feature extraction and
selection for star-galaxy classifiers by learning the local patterns.
The results of a series of unsupervised CNN model experiments,
using several models with different parameters and classes, are
unsatisfactory due to the noisy astronomical data, as the overall
accuracy is 38%, and the MSE error function value is 0.0012.
Compere to unsupervised CNN models, the supervised models
show high precision and recall, presented in the paper.

Based on a three-step image processing algorithm, the experi-
ments show that supervised learning is a better approach for the
studied datasets than unsupervised learning models. 78% of the
dataset consists of 10465 images is used as training data, and
22% as testing data. The validation dataset is used to adjust and
validate the model. The validation dataset is applied as a test
dataset because of the limited size of the initial dataset.

Table 1 shows the initial and generated datasets, with the size
of two and half million, to train and test the supervised CNN
model and the classification accuracy per each object. The data is
generated using the data augmentation techniques to increase the
model’s accuracy by decreasing both the training and validation
losses. As the accuracy of train data less than the testing data, it
prevents the model from overfitting. The model is not deep to be
overfitted that easy. The dropout layer is added between existing
layers to prevent overfitting by increasing the model accuracy as
smoothly as possible. Also, a 50% high dropout coefficient is used,
and the training process is stopped as soon as the validation loss
rises.

These results are better for Markarian galaxies and planetary
nebulae, while carbon stars’ precision is quite low. The supervised
learning model’s1 overall accuracy is about 87% achieved using
different model configurations and several labeled datasets (see
Fig. 8). Moreover, according to the figure, the learning curve
shows a good feat of training and testing datasets.

As the loss function, the categorical cross-entropy has been
used to train the network. In Fig. 9, the x-axis represents the
number of iterations, while the y-axis represents the loss function
value. The loss function value is decreased with an increase in the
number of iterations and finally stabilized. Based on the experi-
ments, the adadelta optimizer is used to adjust the network.

1 The developed code used in this paper is available at: https://github.com/
rmenianVO/DFBSDataML.

https://github.com/ArmenianVO/DFBSDataML
https://github.com/ArmenianVO/DFBSDataML
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Table 1
Supervised ML model accuracy and datasets.
Objects Initial Generated Precision Recall F1-score

Train Test Train Test

Hot subdwarfs (sd) 550 157 2750 785 95 96 96
Carbon stars (C) 331 94 1650 470 86 84 85
Ultraviolet-excess galaxies 305 86 1525 430 89 91 90
M type stars 104 44 770 220 80 49 61
Planetary nebulae (PNe) 11 4 131 48 100 100 100

Total 1301 385 6826 1953
o
a
r
a
C
-
a
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c
t

Table 2
CNN model classification results for two and a half million objects.
Accuracy C Class SD Class PN Class M Class Mrk Class Other

95% 403,556 154,623 6 6 29,336 1,929,075
90% 579,906 244,217 16 21 44,342 1,648,100
85% 697535 322233 278 62 61782 1434712
80% 789450 394554 348 129 81463 1250622

Fig. 8. CNN model accuracy.

Fig. 9. Loss function of CNN training and testing.

The learning rate is 0.01. The experimental results are pre-
sented in Table 2 based on two and a half million objects, which
is about 10% of the DFBS. The number of classified carbon stars,
hot subdwarfs, and Markarian galaxies respectively are varied
between 403556–789450 (16%–31%), 154623–394554 (7%–24%),
29336–81463 (1%–5%) when the accuracy decreased from 95% to
80%.

A variety of datasets sizes are carried out to tune the model
and find data trends. Table 3 shows the results of about four
million objects, where the number of classified carbon stars,
5

Table 3
CNN model classification results for about four million objects.

C Class SD Class PN Class M Class Mrk Class Other

95% 556,309 286,717 14 11 61,858 3,346,654
90% 829,577 440,737 38 46 91,670 2,889,531
85% 1,023,669 573,130 312 129 127,578 2,526,781
80% 1,181,754 695,987 392 265 167,559 2,205,606

hot subdwarfs, and Markarian galaxies respectively are varied
between 556309–1181754 (13%–27%), 286717–695987 (7%–16%),
61858–167559 (1%–4%) when the accuracy decreased from 95% to
80%.

The linear regression analyzes show a high correlation be-
tween the total number and classified objects. For instance, in
the case of sd and C classes, the linear regression correlation
coefficient is equal to 98%–99%, and R2 is equivalent to 96%–
99%. According to the linear regression analyzes, it is assumed
to expect to have at least six million carbon stars, three mil-
lion hot subdwarfs, and one million Markarian galaxies in the
DFBS survey, numbers that are significantly higher than expected
before.

4. Conclusions and future work

In this paper, CNNs were introduced to classify UV-excess
galaxies, quasars, compact galaxies, and other spectral objects in
the DFBS survey. In the suggested supervised CNN model, the
best results have been achieved in 34 epochs. The experiments
show a good correspondence between the predicted and mea-
sured values, such as the overall accuracy is within 87%. Linear
regression techniques have been implemented to forecast the
number of objects in the DFBS survey expecting to have at least
six million carbon stars, three million hot subdwarfs, and one
million Markarian galaxies.

It is planned to increase the number of classes to predict
and the accuracy. Based on the results, a cloud service will be
deployed based on the suggested ML models.
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